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ABSTRACT 
The parameters that determine the removal of moisture content have become necessary 
in seaweed research as they can reduce cost and improve the quality and quantity of the 
seaweed. During the seaweed’s drying process, many drying parameters are involved, so it is 
hard to find a model that can determine the drying parameters. This study compares seaweed 
big data performance using machine learning algorithms. To achieve the objectives, four 
machine learning algorithms, such as bagging, boosting, support vector machine, and 
random forest, were used to determine the significant parameters from the data obtained 
from v-GHSD (v-Groove Hybrid Solar Drier). The mean absolute percentage error (MAPE) 
and coefficient of determination (R2) were used to assess the model. The importance of 
variable selection cannot be overstated in big data due to the large number of variables 
and parameters that exceed the number of observations. It will reduce the complexity of 
the model, avoid the curse of dimensionality, reduce cost, remove irrelevant variables, 
and increase precision. A total of 435 drying parameters determined the moisture content 
removal, and each algorithm was used to select 15, 25, 35 and 45 significant parameters. 

The MAPE and R-Square for the 45 highest 
variable importance for random forest are 
2.13 and 0.9732, respectively. It performed 
best, with the lowest error and the highest 
R-square. These results show that random 
forest is the best algorithm to decide the vital 
drying parameters for removing moisture 
content. 

Keywords: Big data, drying, machine learning, 

seaweed, variable selection
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INTRODUCTION

Globally, the demand for food is increasing every day. The United Nations world population 
index predicts that by 2050, there will be 9.7 billion people on the planet (Namana et al., 
2022). The demand for food will increase due to the rate of population growth and the effect 
of COVID-19. Rahimi et al. (2022) stated that COVID-19 affected the treatment of animals, 
while the lockdown affected the production of food and the supply of labour. Bajan et al. 
(2020) stated that world population growth comes with increased food production demand. 
It is essential to increase production, which involves increasing energy consumption to 
meet this demand. The need to meet the demand for food products and the food market is 
necessary (Safronova et al., 2022). Food is a security to the survival of human beings, and 
the hunger problem needs to be solved with a breakthrough in biotechnology (Prosekov & 
Ivanova, 2018). By 2050, the world should be prepared to feed over 9 billion people (Cole 
et al., 2018). To feed the increasing population, drying or preserving food is an important 
alternative that can be considered to preserve the nutritional value and quality of food.

Drying food involves the removal of moisture from the food. Solar driers dry many 
products, especially aquaculture and agriculture (Javaid et al., 2020). Nuroğlu et al. (2019) 
have used “drying in an oven under the magnetic field” and “drying under the sun and 
magnetic field” to dry grape samples and chilli pepper. From the results, the chilli pepper 
was the most contaminated when the traditional drying method was used. In East Africa, 
the rate of loss of farm produce is high due to the use of sun drying. The authors provided 
a prototyped modified solar dryer as another option. Multiple metallic solar panels were 
used to boost the drying performance of the solar drier (Ssemwanga et al., 2020).

The global seaweed industry provides diverse products directly or indirectly for 
human consumption, with a total value of approximately US$ 10 billion a year (Bixler 
& Porse, 2011). Malaysia's seaweed production grew from 1,000 metric tons in 1991 to 
14,000 metric tons in 2009; in 2012, it was 33,000 metric tons. It is anticipated to continue 
growing exponentially over the next 30 years. The nursery, cultivating, drying, harvesting, 
processing, and marketing are a few processes involved in the carrageenan-bearing seaweed 
sector. Managing harvested seaweed biomass is essential to the carrageenophyte industry's 
entire value chain. It is important to understand the drying process for foods (Ali, Fudholi 
et al., 2017; Ali, Sulaiman et al., 2017). Seaweeds are very important to marine resources 
and are found in coastal waters. Seaweeds are very beneficial to human beings and fish. 
Seaweeds can be used as food, fertilizer, cosmetics, biofuel and medicine (Echave et al., 
2022; Pradhan et al., 2022).

Machine learning variable selection has been used by many authors (Ali et al., 2021; 
Arjasakusuma et al., 2020; Gunn et al., 2022; Meyer et al., 2019). Application of the 
important variables will improve accuracy, reduce overfitting, and ensure robustness. Lim 
et al. (2020) used ridge regression to determine the drying parameters of fish and included 
the interaction terms.
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As the dimensions of datasets in predictive modelling continue to grow, feature 
selection becomes increasingly practical. Datasets with complex feature interactions and 
high levels of redundancy still present a challenge to existing feature selection methods. 
Variable selection is becoming useful, and the dimensions of data, complexity, volume, 
interactions, heterogeneity, and the number of irrelevant variables make it a problem 
for traditional methods. A machine-learning algorithm can model complicated patterns 
(Solyali, 2020). 

To fill the gap in the existing literature, a comparison of performance and evaluation 
of seaweed big data using four machine learning algorithms, such as bagging, boosting, 
support vector machine and random forest, will be evaluated.

MATERIALS AND METHODS 
Model Building

Knowing the important parameters that determine the moisture content of the seaweed after 
drying is important. We combined the second-order interaction with the main 29 seaweed 
drying parameters to get 435 drying parameters, to develop an intelligent system. All 435 
parameters determine the moisture content of the seaweed after drying. With this limitation, 
we have 435 parameters to predict the moisture content of seaweed after drying. Therefore, 
we selected 15, 25, 35, and 45 as the most important variables, and boosting, bagging, 
random forest, and support vector machines will be used as the algorithms. The system for 
drying has already been designed and data collected, but no optimization has been done. 
The flowchart in Figure 1 shows the procedure and the methodology used in this study.

Stage I
It involves the inclusion of all possible models.

                          	        (1)

where n is the number of single factors, and r is the number of orders. Equation 1 can 
compute the total number of all possible models.

Stage II 
It requires simulation using random forest, boosting, support vector machine, and bagging 
machine learning algorithms to model the data. Each machine learning algorithm is then 
used to select the 15, 25, 35 and 45 highest important variables to determine the moisture 
content removal of the seaweed after drying. If the parameters are significant and satisfy 
the conditions, they will be imposed in the optimization. Otherwise, it will be removed. 
Features selection can only provide the rank of relevant variables and not the number of 
significant factors, and there is no rule for determining how many parameters should be 
used in a prediction model (Chowdhury & Turin, 2020; Drobnič et al., 2020; Kaneko, 
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2021). Hence, if the parameters do not rank among the 15, 25, 35, and 45 highest important 
variables, they will be removed from the model.

Stage III
The prediction must be made to achieve the objectives further, and the errors must be 
calculated. The outliers are also computed using 2 - sigma limits. Outliers are observations 
far from the measures of location (Leys et al., 2019). The best model is selected using 
mean absolute percentage error (MAPE) and coefficient of determination (R-square) metric 
validation. 

                                  	        (2)

Where n is the number of observations, is the actual value, and is the forecast value.

                              	        (3) 

Where is the actual value, and is the forecast value.

The metrics were used to assess the model. The formulae for the model metric 
validations are given in Equations 2 and 3. The lower the MAPE, the better the prediction 
accuracy. The higher the R-square, the better the prediction accuracy. 

Figure 1. Flowchart of the steps for the study
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Boosting

Boosting is an ensemble machine learning modelling technique that can create a powerful 
classifier from a huge number of weak classifiers. Boosting can be used to improve the 
precision of a machine-learning algorithm. Rahman et al. (2020) stated that boosting 
algorithms use the training observations that end up in misclassifications. Boosting 
algorithms use the weight of the samples of the weak classifiers depending on the precision 
of the preceding boosting rounds (Alsahaf et al., 2022). Boosting is to measure the errors 
in the predecessors of the classifier, which makes it sensitive to outliers. It cannot be 
scaled- up since the estimator relies on the accuracy of the past predictors. Given the 
matrix of explanatory variables and the dependent variable vector 

. In the regression coefficients vector , the value of the predicted response 
variable is represented by , and the residuals are denoted by . The LSB 
(ε) denotes the least squares for the boosting. The LSB (ε) in regression produces models 
with interesting statistical properties (Freund et al., 2017). LSB (ε) algorithm is expressed 
as follows according to Freund et al. (2017) and Friedman (2001).

Algorithm: LSB (ε)
Fix the rate of learning ε > 0; the rate of learning is the rate at which the coefficients 
produced by LSB (ε) converge to the group of the unregularized least square solutions, 
and the iterations number M and initialize the and .

1.	 Do the following for 0 ≤ k ≤ M, do the following:
2.	 Determine the covariate index jk and  as shown below:

, where

, for m = 1,2, ... , p. 

3.	 Update the residuals and coefficients of regression as follows:

and ,  

Furthermore, the LSB algorithm at the kth iteration selects the covariate index jk, leading to 
the maximal decrease in the fit of the univariate regression to the present residuals. Suppose 
the represents the best fit for the univariate regression to the present residuals. In 
that case, LSB will update the residuals and the coefficients of the 
jk th: to minimize the error.

Bagging

Bagging is an ensemble machine-learning technique that can improve the accuracy and 
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performance of machine-learning algorithms. A common integration technique known as 
bagging generates numerous copies of the training set using a bootstrapping procedure, 
which is then utilized to train several models (Yang et al., 2020). Bagging apply comparable 
learners to tiny sample populations before calculating the average of all the forecasts (Kabari 
et al., 2019). Bagging can improve the accuracy of a model, reduce overfitting of data, and 
deal with data of higher dimensionality effectively. However, bagging is computationally 
expensive. 

Consider a regression setup where the data is represented by , and 
Yi and Xi represent the p-dimensional variables for the ith instance. In the presence of a 
new independent variable or covariate x, a dependent variable for , the 
response variable that corresponds to x can be represented by: 

The estimator could be a learning algorithm or complex model, for instance, a linear 
regression via testing, classification, and regression trees. The hn denotes the function of 
the sample n.
Theoretically, bagging is defined as:

i.	 Build a bootstrap sample  based on the practical 
distribution of the pairings .

ii.	 Using the plug-in principle to determine the bootstrapped forecaster , which 
is, .

iii.	 is the bagged predictor.

The bootstrap expectation in step (III) can be applied by Monte Carlo: Start with step (I) for 
every bootstrap simulation , to approximate , we compute 

as in step II, is frequently chosen in the range of 50, depending on 
the sample size and computational cost related with assessing the predictor. The plug-in 
principle is used in bootstrapping by estimating the population's distribution from the 
information in the sample distribution.

Random Forest (RF)

RF can be defined as a combination of many classification and regression trees (CARTs), and 
the aim is to solve the problem of overfitting in individual CART (Georganos et al., 2021). 
Given that is a learning set with a group of  pairs of features, with the response x1, x2, 
..., xn if . A group of p-features xi (for i = 1,2, ..., N) is an N × p matrix X, in which the 
rows i = 1,2, ..., N relates as xi, with columns j = 1,2, ..., p as xj. Similarly, the response can 
be written as a vector y = (y1, y2, ..., yN). In this scenario, the supervised learning job can be 
indicated as learning the function  from the learning set . The goal is to 
develop a model whose predictions for the variable , represented by , are as precise 
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as possible. In this situation, the Y variable must be continuous. The results of the model 
can be described as follows, given that the regressor function represents , in which 

. During the statistical learning process, the explanatory variables, X1, X2, ... , Xp and 
the response variable Y, are random variables, and the values X × Y are selected collectively 
in respect of the joint probability distribution P (XY), the X is the vector of random [X1], 
[X2], ..., [Xp]. RF can handle large data effectively and has high precision over decision 
tree algorithms. However, more resources are needed for computation, and it takes more 
time when compared to a decision of the tree algorithm.

Algorithm:
For b = 1 to n

1.	 Create a bootstrapped sample from the training set D.
2.	 Grow the tree by using the m from the bootstrapped sample .

For a specific mode
i.	 Select m variables randomly.
ii.	 Identify the top split variables and values.
iii.	 Divide a node using the top divided variables and values.

Replicate steps 1–3 till the stopping conditions are satisfied.

Support Vector Machine (SVM)

SVM is popularly used to solve regression and classification problems. SVM has the 
capacity to discover nonlinear connections by using kernel function (Rashidi et al., 2019). 
Given , X denotes the pattern space of the inputs 
( ) . 

From Cortes and Vapnik (1995), by comparing the standard Gaussian regression 
with the squared error loss function is minimized with the loss for observations i given as 

.
However, in support vector regression, the ε- insensitive loss function is minimized, and 
any loss lesser than ε is set to 0. Outside that bound, a simple linear loss function is applied 
in Equation 4:

	       (4)

For instance, suppose f(x) is a linear function . Equation 5 represents 
the loss function given as:

		         (5)
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The is the tuning parameter and can be written as the constrained optimization problem: 
minimize , subject to the constrain in Equation 6:                                          

			          (6)

If observations do not lie within the band around that regression line, then there is no 
solution to the problem. The slack variables and are used; this allows the observations 
to fall outside the ε band around that regression line.

Minimize:                                 			          (7)

Subject to                                 			         (8)

The equation to minimize is shown in Equation 7, and the constraint is provided in Equation 
8. However, before, K > 0 regulated how strong it is to prevent observations beyond the 
ε band.

Evaluation Metric

MAPE is widely used because it is easy to interpret and due to its scale-independency 
(Kim & Kim, 2016). 

R2 is the proportion of variance in the dependent variable that can be predicted from a 
set of independent variables. R2 lies between 0 and 1. Moreover, the value determines the 
performance of the model (Chicco et al., 2021; Gouda et al., 2019; Ibidoja et al., 2016). 

The MAPE and R-square are very useful for validating a model. The MAPE is the 
average difference between predicted and real values. In this study, MAPE is the average 
percentage error between the moisture content of the seaweed predicted by the model and 
the real value. The lower the MAPE, the better the model fits the data. R-square is the 
amount of variance in the dependent variable that the independent variable can describe. 
The higher the R-square value, the better the dependent variable can be explained. The 
R-square is also called the coefficient of determination; it is the quantity of variability in 
a variable explained by changes in the other variable. For a high precision in the model, 
we expect the error to be small and is the loss function for regression in machine learning 
(Jierula et al., 2021).  

DATA COLLECTION

We used primary data on seaweed drying obtained using a v-groove hybrid solar drier. The 
data was collected using sensors installed on the v-GHSD (v-Groove Hybrid Solar Drier) 
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in Semporna, Malaysia, on the southeastern coast of Sabah. The data contains 29 different 
drying parameters that determine the moisture content of the seaweed, and each parameter 
has 1914 observations. The dependent variable is the moisture content after drying. We 
have different parameters that represent different relative humidity. Another parameter is 
the sun, and the remaining parameters are the temperature.

Figure 2. v-GHSD (v - Groove Hybrid Solar Drier)

Figure 2 represents the v-GHSD (v - Groove Hybrid) solar drier used to dry the seaweed 
and remove moisture. It also shows the positions of the parameters that determine the 
moisture content removal of the seaweed. The sensors are placed in strategic positions to 
measure the data. From Table 1, the T’s are the temperature, Y is the moisture content, H’s 
are the humidity, and PY is the solar radiation.

Table 1 
Representation of parameters

Symbols Factors Meanings
Y Dependent Moisture Content

H1 Independent Relative Humidity Ambient
H5 Independent Relative Humidity Chamber
PY Independent Solar Radiation
T1 Independent Temperature (°C) ambient

T2, T3, T4 Independent Temperature (°C) prior to entering the solar collector
T5 Independent Temperature (°C) in opposite the down v-Groove

(Solar Collector)
T6, T8 Independent Temperature (°C) in front of the up v-Groove

(Solar Collector)
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RESULTS AND DISCUSSION

Tables 2, 3, 4, and 5 show the variables selected for 15, 25, 35 and 45 for bagging, boosting, 
support vector machine, and random forest, respectively.

Table 2 
The 15 highest variable importance

Model Selected Variables

Bagging T1, T4, T7, T8, T1*T8, T1*H5, T3*T12, T6*H1, T9*T13, T11*T15, 
T12*T28, T14*T22, T19*T21, T22*T26, T26*T27

Boosting T1, T7, H1, H5, T9*PY, T25*T28, H1*H5, T10*H5, T13*T28, T28*T29, 
T10*H1, T7*H1, T26*T28, T12*H1, T2*T7

Support
Vector Machine

T15, T16, T25, T26, T2*T8, T6*T8, T6*T10, T7*T10, T8*T17, T9*H5, 
T12*PY, T13*T17, T19*H5, T21*H5, T26*H5

Random Forest T8, T2*T6, T1*T6, T6*T13, T21*H5, T19*H5, T7*T9, T22*H5, 
T6*T29, H5*PY, T7*H1, T8*H5, T26*H5, T8*H1, T1*T2

Table 3 
The 25 highest variable importance

Model Selected Variables
Bagging T1,T4,T6,T7,T8,T9,T26,T1*T4,T1*T5,T1*T8,T1*H5,T2*T22,T3*T12,T3*P

Y,T4*T22,T6*H1,T6*H5,T9*T13,T10*PY,T11*T15,T12*T28,T14*T22,T19*
T21,T22*T26,T26*T27

Boosting T1,H1,H5,T7,T9*PY,T25*T28,H1*H5,T10*H5,T13*T28,T28*T29,T10*H1,
T7*H1,T26*T28,T12*H1,T2*T7,T10*PY,T6*T7,T8*H1,T11*PY,T8*PY,T1*
T4,T3*T5,T9*T21,T5*T26,T6*H5

Support 
Vector 
Machine

T15,T16,T25,T26,T28,T1*T17,T2*T8,T3*T17,T6*T8,T6*T10,T7*T10,T8*T
17,T9*H5,T10*H1,T11*PY,T12*PY,T13*T17,T15*T16,T15*T25,T19*T22,T
19*H5,T21*H5,T25*T28,T26*H5,T27*H5

Random 
Forest

T7, T8, H1, T1*T2, T1*T6, T1*T7, T1*T9, T2*T6, T2*T7, T2*T13, T6*T13, 
T6*T29, T7*T9, T7*H1, T8*H5, T8*H1, T14*H5, T19*H5, T21*H5, 
T22*H5, T25*H5, T26*H5, H1*PY, H1*H5,  H5*PY

Table 4
The 35 highest variable importance

Model Selected Variables
Bagging T1, T4, T6, T7, T8, T9, T22, T26, PY, T1*T4, T1*T5, T1*T8, T1*H5, T2*T22, 

T3*T12, T3*PY, T4*T22, T5*T11, T5*T28, T6*H1, T6*H5, T6*PY, T7*T22, 
T7*PY, T8*T9, T9*T13, T10*T19, T10*T27, T10*PY, T11*T15, T12*T28, 
T14*T22, T19*T21, T22*T26, T26*T27
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Table 4 (Continue)

Model Selected Variables
Boosting T1, T7, T8, T9, H1, H5, PY, T9*PY, T25*T28, H1*H5, T10*H5, T13*T28, 

T28*T29, T10*H1, T7*H1, T26*T28, T12*H1, T2*T7, T10*PY, T6*T7, 
T8*H1, T11*PY, T8*PY, T1*T4, T3*T5,
T9*T21, T5*T26, T6*H5, H5*PY, T6*H1, H1*PY, T23*H5, T4*T5, T14*H5, 
T2*T28

Support 
Vector 
Machine

T12, T15, T16, T25, T26, T28, T1*T17, T2*T5, T2*T8, T2*T17, T3*T17, 
T3*T23, T4*T17, T5*T19, T6*T8, T6*T10, T7*T10, T7*T16, T7*T17, 
T8*T17, T8*T28, T9*H5, T10*H1, T11*T14, T11*PY, T12*PY, T13*T17, 
T15*T16, T15*T25, T19*T22, T19*H5, T21*H5, T25*T28, T26*H5, T27*H5

Random 
Forest

T2, T7, T8, T9, H1, T1*T2, T1*T6, T1*T7, T1*T9, T1*T13, T2*T6, T2*T7, 
T2*T13, T5*T9, T6*T8, T6*T9, T6*T13, T7*T9, T7*H1, T7*PY, T8*H1, 
T8*H5, T8*PY, T9*H5, T10*H5, T11*H5, T14*H5, T15*H5, T19*H5, 
T21*H5, T22*H5, T25*H5, H1*H5, H1*PY, H5*PY

Table 5
The 45 highest variable importance

Model Selected Variables
Bagging T1, T4, T6, T7, T8, T9, T10, T14, T22, T26, PY, T1*T2, T1*T4, T1*T5, T1*T8, 

T1*T10, T1*H5, T2*T22, T3*T12, T3*PY, T4*T22, T5*T11, T5*T28, T6*T15, 
T6*H1, T6*H5, T6*PY, T7*T22, T7*PY, T8*T9, T9*T13, T9*T23, T10*T19, 
T10*T27, T10*PY, T11*T15, T11*T16, T11*T17, T12*T25, T12*T28, 
T14*T22, T14*T23, T19*T21, T22*T26, T26*T27

Boosting T1, T7, T8, T9, H1, H5, PY, T1*T4, T2*T7, T2*T28, T3*T5, T4*T5, T5*T25, 
T5*T26, T6*T7, T6*H1, T6*H5, T7*T12, T7*H1, T7*H5, T8*H1, T8*PY, 
T9*T21, T9*T26, T9*H5, T9*PY, T10*T23, T10*H1, T10*H5, T10*PY, 
T11*PY, T12*H1, T12*H5, T13*T28, T14*H5, T23*H5, T25*T28, T25*T29, 
T26*T28, T26*T29, T26*H5, T28*T29, H1*H5,  H1*PY, H5*PY

Support 
Vector 
Machine

T12, T15, T16, T25, T26, T28, PY, T1*T5, T1*T6, T1*T17, T2*T5, T2*T6, 
T2*T8, T2*T17, T3*T5, T3*T17, T3*T23, T4*T5, T4*T17, T5*T13, T5*T19, 
T6*T8, T6*T10, T7*T10, T7*T16, T7*T17, T8*T17, T8*T28, T9*T23,T9*H5, 
T10*T23, T10*H1, T11*T14, T11*T22, T11*PY, T12*PY, T13*T17, T15*T16, 
T15*T25, T19*T22, T19*H5, T21*H5, T25*T28, T26*H5, T27*H5

Random 
Forest

T2, T7, T8, T9, H1, T1*T2, T1*T6, T1*T7, T1*T9, T1*T13, T1*H1, T2*T6, 
T2*T7, T2*T9, T2*T13, T3*T8, T3*H1, T4*T8, T4*H1, T5*T9, T6*T7, 
T6*T8, T6*T9, T6*T13, T7*T9, T7*H1, T7*PY, T8*H1, T8*H5, T8*PY, 
T9*H5, T10*H5, T11*H5, T13*H1, T14*H5, T15*H5, T16*H5, T19*H5, 
T21*H5, T22*H5, T23*H1, T25*H5, H1*H5, H1*PY, H5*PY
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Table 6 is a four-dimensional results summary of the single factor the machine learning 
algorithms selected for the 45 high-ranking variables. Bagging and boosting have 4 single 
factors in common, bagging and SVM have 2 single factors in common, and bagging and 
random forest have 3 single factors in common for the first 45 highest important significant 
factors that determine the moisture content of the seaweed. For every machine learning 
algorithm, 11 (24.4%), 7 (15.6%), 7 (15.6%), and 5 (11.1%) single parameters are selected 
for bagging, boosting, support vector machine, and random forest, respectively. Bagging 
selects the highest number of single variables.  

Table 6
Number of single variables for the 45 selected single factors for each machine learning algorithm

Bagging Boosting SVM Random Forest
Bagging 11 4 2 3
Boosting 4 7 - 4
SVM 2 - 7 -
Random Forest 3 4 - 5

Table 7 is a four-dimensional results summary of the second-order factors the machine 
learning algorithms selected for the 45 high-ranking variables. Bagging and boosting have 
4 second-order factors in common, bagging and SVM have 2 second-order factors in 
common, and bagging and random forest have 2 second-order factors in common. Random 
forest and boosting have the highest number of second-order factors of 11 in common with 
the factors selected. For the interaction, bagging, boosting, support vector machine and 
random forest selected, 34 (75.6%), 38 (84.4%), 38 (84.4%), and 40 (88.9%). 

Table 7
Number of similar variables for the 45 selected interaction factors for each machine learning algorithm

Bagging Boosting SVM Random Forest
Bagging 34 4 2 2
Boosting 4 38 7 11
SVM 2 7 38 6
Random Forest 2 11 6 40

The high number of interaction variables selected showed how important it is to 
consider the interaction in the moisture content removal of agricultural products. The results 
of the interaction are also supported by the results of (Javaid et al., 2019).
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Figure 3. Variable importance for (a) 45, (b) 35, (c) 25, and (d) 15 random forest
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Figure 3 shows the plot of the variable importance of the selected 45, 35, 25, and 
15 parameters of the seaweed big data using the random forest algorithm. We used the 
randomForest and caret packages in the R programming language to achieve this. It reveals 
how important the variable is in determining the moisture content removal of the seaweed. 
The five most important factors are the parameters T2*T6, T1*T6, T6*T13, T21*H5, and 
T19*H5. T2*T6 and T1*T6 rank at the top for the factors.

Figures 4 to 7 show the standardized residual plots of random forest, support vector 
machine, bagging and boosting, respectively. Each algorithm produced different patterns 
of plots. Likewise, there were differences when the number of parameters 15, 25, 35 and 
45 selected were compared for each algorithm. It also shows the upper and lower control 
limits to identify outliers. The percentage of outliers is calculated using the number of 
observations outside the 2-sigma limit.
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Figure 4. Plot for standardized residuals for (a) 15, (b) 25, (c) 35 and (d) 45 high-ranking variables for 
random forest 
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Figure 5. Plot for standardized residuals for (a) 15, (b) 25, (c) 35 and (d) 45 high-ranking variables for support 
vector machine
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bagging
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Figure 7. Plot for standardized residuals for (a) 15, (b) 25, (c) 35 and (d) 45 high-ranking variables for 
boosting 

Table 8 shows the evaluation metrics for the 15, 25, 35 and 45 highest important 
ranking variables. The 45 highest-ranking important variables for random forest have 
the value of MAPE (2.13) and R-Square (0.9732), which gave the best performance. It is 
similar to Chen et al.  (2020), where random forest performed better than the support vector 
machine. With these results, random forest is the best to determine the moisture content 
removal of the seaweed. MAPE (2.13) represents the average percentage error between 
the moisture content removal of the seaweed predicted by the model and the real value. 
Sumari et al. (2021) assert that if MAPE is less than 10, it is high prediction accuracy. The 
value R-square (0.9732) implies that the selected drying parameters can explain 97.32% 
of the dependent variable moisture content variance. 

Table 8
Evaluation metrics
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High 
Ranking 
Variables

Bagging Boosting Support Vector
Machine

Random Forest

MAPE R2 MAPE R2 MAPE R2 MAPE R2

15 12.26 0.7284 8.17 0.5310 8.61 0.8348 2.46 0.9638
25 9.78 0.8270 8.70 0.5544 7.98 0.8691 2.33 0.9671
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Table 8 (Continue)

High 
Ranking 
Variables

Bagging Boosting Support Vector
Machine

Random Forest

MAPE R2 MAPE R2 MAPE R2 MAPE R2

35 8.41 0.8669 8.18 0.5368 7.57 0.8758 2.18 0.9715
45 8.15 0.8767 8.20 0.5570 8.61 0.8348 2.13 0.9732

Table 9
Percentage of outliers outside 2 - sigma limits

Model
The Highest Variable Importance

15 25 35 45
μ ± 2σ (%) μ ± 2σ (%) μ ± 2σ (%) μ ± 2σ (%)

Random Forest 123(6.43%) 119(6.22%) 99(5.17%)  92(4.81%)
SVM 106(5.54%) 89(4.65%) 79(4.13%) 80(4.18%)
Bagging 81(4.23%) 84(4.39%) 77(4.02%) 73(3.81%)
Boosting 185(9.67%) 152(7.94%) 171(8.93%) 165(8.62%)
The number outside and inside the parentheses are the number of outliers and the percentage 
of outliers for the 2-sigma limit, respectively.

Table 9 shows the number of outliers with their percentages using the 2- sigma limits. 
Data can have outliers due to factors that cannot be controlled, and these outliers will 
affect the prediction accuracy (Lim et al., 2020; Rajarathinam & Vinoth, 2014). For 15 
important variables, boosting has the highest number of outliers, with 185. It represents 
less than 10% of the total observations. For the 25 highest important variables, boosting 
has the highest number of outliers, with 152 observations. It represents less than 8% of the 
total observations. Of the 35 highest important variables, boosting has the highest number 
of outliers, with 171 observations. It represents less than 9% of the total observations. Of 
the 45 highest important variables, boosting has the highest number of outliers, with 165 
observations. It represents less than 9% of the total observations. Although the random 
forest has one of the highest outliers, it performs better. This result also aligns with (Liu et 
al., 2018), where random forest performed better with uncertainties and variances.

CONCLUSION 

This study computed the total number of all possible models to achieve the objectives. 
Random forest, boosting, support vector machine, and bagging machine learning algorithms 
were used to model the data. The 15, 25, 35 and 45 highest important variables were 
selected to determine the moisture content removal of the seaweed big data after the 
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drying. The errors and outliers were computed using metric validation and 2-sigma limits. 
The percentage representing the interaction parameters has shown how important it is to 
determine the moisture content removal of seaweed because the interaction parameters 
selected by the algorithms are more than the single parameters. From the results, the 
random forest with 45 highest variable importance gave better results when compared to the 
bagging, boosting and support vector machine. The values of MAPE (2.13) and R-Square 
(0.9732) gave the best performance. With these results, an intelligence system based on 
random forest is the best algorithm to determine the important drying parameters for the 
moisture content removal of the seaweed with the lowest error.

A few batches of experiments can be used to confirm these results for future work. 
Missing value implications can also be investigated.
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